
Adversary-Agent Reinforcement Learning for
Pursuit–Evasion

Xun Huang *

College of Engineering, Peking University, Beijing, 100871, China PRC

A reinforcement learning environment with adversary agents is proposed in this work
for pursuit–evasion game in the presence of fog of war, which is of both scientific signifi-
cance and practical importance in aerospace applications. One of the most popular learning
environments, StarCraft, is adopted here and the associated mini-games are analyzed to
identify the potential limitations for training adversary agents. The key contribution in-
cludes the analysis of the potential performance of an agent by incorporating control and
differential game theory into the specific reinforcement learning environment, and the de-
velopment of an adversary-agents challenge (SAAC) environment by extending the current
StarCraft mini-games. The subsequent study showcases the use of this learning environ-
ment and the effectiveness of an adversary agent for evaders. Overall, the proposed SAAC
environment should benefit pursuit–evasion studies with rapidly-emerging reinforcement
learning technologies. Last but not least, the corresponding code is available at GitHub.

Nomenclature

a, c = discretization of game domain
h = evading trajectory
H = unit health
lx,y = the side length of game domain
J = linear quadratic cost
K = searching steps

*Professor. State Key Laboratory of Turbulence and Complex Systems, Department of Aeronautics and Astronautics.
Also as Adjunct Professor at the Department of Mechanical and Aerospace Engineering, The Hong Kong University of
Science and Technology. AIAA Associate Fellow. huangxun@pku.edu.cn.

1 of 25

ar
X

iv
:2

10
8.

11
01

0v
1

 [
cs

.L
G

]
 2

5
A

ug
 2

02
1

M = discretized blocks of game domain
Ne,p = the number of evaders/pursuers
N = the number of the captured evaders
p = the probability of capture
r = the discovery or attacking radius
Q = game domain
R = the longest length inside game domain
s = searching trajectory
R = reward
Tk = defeated time of all evaders
Tf = game duration
U = the moving speed of units
v = the expected capture time
x, y = Cartesian axis
µ = the area of game domain
Superscripts

(·)∗ = the optimal solution of (·)
Subscripts

(·)e,p = variables related to evaders/pursuers

I. Introduction

A reinforcement learning environment is developed in this paper for pursuit–evasion game, which
is a classical but challenging problem with important aerospace applications, such as simultaneous
and cooperative interceptions [1, 2] and exoatmospheric interception [3, 4, 5, 6] and search-and-
rescue operations [7]. The problem has been studied extensively under the analytical framework of
differential game theory [8, 9] and optimal control theory [4, 10], respectively. Recently, the merging
of game theory, control theory and deep learning has become a popular topic [11]. Wang et al. have
proposed a distributed cooperative pursuit strategy based on reinforcement learning and performed
tests in the openAI Predator–Prey environment [12]. Multi-agent reinforcement learning has been
further considered for pursuit–evasion with multiple unmanned aerial vehicles [13]. Li et al. have
proposed an estimation algorithm of optimal pursuing strategy based on Thompson sampling [14]
and conducted tests in Atari Pac-Man environment. Most of those pioneering works have essentially
focused on artificial intelligent (AI) strategies only for one player (usually the pursuer), while the

2 of 25

other player is either immobile or cannot be directly controlled by another AI agent, which actually
reduces possible conflicting levels of pursuit–evasion game. To address this issue, the current work
endeavors to develop a reinforcement learning environment for pursuit–evasion, both of which can
then be directly controlled by a separate agent, through the extension of the famous StarCraft II game
environment.

StarCraft II is one of the most popular real-time strategy games currently played worldwide. The
game requires human players making very rapid decisions on strategical, tactical, and economical
levels. To study AI’s capability, DeepMind has recently developed a Python interface library, PySC2
[15], which exposes StarCraft II’s low-level application programming interface to a reinforcement
learning environment. The combination of PySC2 and StarCraft II learning environment has enabled
deep learning studies of competition and coordination within multiple agents [16] in complex envi-
ronment with representative terrains (cliff, water, forest, etc.) and partial observation (so-called fog
of war a). An agent from DeepMind, AlphaStar [17], has achieved grandmaster level performance
by beating top professional players [18]. Nevertheless, it is worthwhile to mention that the training
of AlphaStar requires thousands of GPU processors and the cost was estimated to be more than 10
million USD [19], which is prohibitive for small research groups.

To reduce complexities from full StarCraft games, DeepMind has further provided seven single-
player, fixed length mini-games to explore deep learning capabilities on various specific tasks. In
which, the so-called FindAndDefeatZerglings mini-game is very similar to one type of classical
pursuit–evasion games in dark room (also known as the princess and monster game [8]). However,
the author argues that the following unsolved issues handicap the existing StarCraft II mini-games to
be a viable deep learning environment for pursuit–evasion.

• First and foremost, the reason about why certain performance could be achieved by an AI agent
is still unknown. When the opponent evasion units are controlled by the low-level build-in
StarCraft II code, the best mean score of the reward b is 46 (from Fig. 6 of the reference [20],
although DeepMind later mentioned this value as 61 in Table 1 of another article [21]). The
same problem has been repeated by some other groups and the achieved best mean score is from
16 (with an asynchronous advantage actor-critic (A3C) agent [22]), 22.1 (with an advantage
actor-critic (A2C) agent [23]) to 45 (with an A2C agent [24]). The best score achieved now is
62 through a relational agent from DeepMind [21]. An intriguing open question is that what is
the best performance that could be achieved by a well-designed agent, and why?

aIn the game, fog of war means that a player cannot observe the information of the region of map when the region is
not close to the player’s units, buildings, or scouting abilities. It is represented by dark region on both the radar map and
the main screen.

bIt was defined in the mini-game as the number of the evasion units that have been found and defeated in 180 s.

3 of 25

• Second, all those mini-game maps from DeepMind only support single agent. The famous
StarCraft multi-agent challenge (SMAC) toolkit in the reference [16] has provided a multi-
agent reinforcement learning environment. Nevertheless, the SMAC environment also only
supports to control all pursuer units with independent agents, whereas the opponent evasion
units are still controlled by the built-in StarCraft II scripts and cannot be controlled by any
external agent. Is it possible to develop a mini-game based StarCraft learning environment
where adversary players can be controlled by opponent AI agents?

Figure 1. Screenshot of the FindAndDefeatZerglings mini-game from DeepMind, where 3 pursuers (marines,
denoted by cyan circles) are searching and firing at 25 zerglings, while only a couple of them (denoted by red
circles) are visible to the marines when fog of war (i.e., the dark area) is activated. As shown below, some of these
army units are replaced with aerospace units in this work to imitate pursuit–evasion game.

The above two issues directly motivate the current work. The first issue is addressed here by
merging control theory and differential game theory. Isaacs has pioneered this direction by proposing
theoretical strategies under a dynamic game framework [25]. Some more recent developments, espe-
cially from the numerical direction, can be found in the monograph [26]. Moreover, Gal has provided
a theoretical solution of princess and monster game in a generic geometrical domain [8]. The dif-
ferences (and similarities) between Gal’s problem and the FindAndDefeatZerglings mini-game (see
Fig. 1) are highlighted in this paper, which further enables the theoretical developments that explain
the achievable game score under different representative scenarios.

The second issue is resolved by first identifying the pending programming issues inside the PySC2
interface c when two adversary agents are implemented. Next, some of the necessary rectifications of
the corresponding code are conducted to fix the identified issues. The associated programming tricks
and modifications are given to enable interested readers to utilize the learning environment and set
up their own differential game problems in the future. Moreover, the source code and the extended

cThe most updated version 3.0 was used during the preparation of this article.

4 of 25

mini-game maps that support two adversary-agents are developed in this work and available to the
public at GitHubd. Overall, the contribution of this work is twofold: (1) to enhance the understanding
of reinforcement learning capability for pursuit–evasion game by merging with control and game the-
ories, and (2) to propose an adversary-agent reinforcement learning environment for pursuit–evasion
game with progressively complicated set-ups of practical importance.

The remaining part of this paper is organized as follows. Section II will introduce the fundamen-
tals of StarCraft II learning environment, with the focus on pursuit–evasion type game. A couple of
pending unsolved issues will be highlighted therein. Then, a theoretical study will be given in Sec. III
to explain the possible game performance that can be achieved for the current pursuit–evasion game
set-up. Next, Sec. IV will introduce the proposed adversary-agent learning environment and discuss
the corresponding results, especially from the perspective of game theory. Finally, Sec. V will sum-
marize the present work. More background information regarding the units and code structures can
be found in the appendix.

II. StarCraft II Learning Environment

StarCraft II is a popular and challenging real-time strategy game developed by Blizzard Enter-
tainment. The basics of StarCraft II is introduced here for the completeness of this paper. For more
information, interested readers can download and play this game for free. Moreover, some important
programming tricks are summarized in this section (and the appendix) for the better using of this
learning environment.

The full game has a science fiction setup with three different races: Terran (supposedly to imitate
human army), Zerg (mimics worm army) and Protoss (mimics alien high-intelligence army). Each
race consists of a number of distinctive units with unique strength and weakness. Some of those used
in this work are summarized in the appendix. The game starts by choosing a race with a number of
units and resource, following by macromanagement to develop economics and build up units (many
of which are aerospace units) and split-second decisions on tactical level to beat opponents, which
could be computer bots, human players or intelligent agents. Due to its complexity and extremely
large action space, StarCraft II has been regarded as a new challenge for reinforcement learning [20]
after the game of Go.

Recently, DeepMind has developed a Python interface library, PySC2 [15], which enable users to
obtain spatial observations (in a form of features, see Fig. 2) and to learn to conduct humanlike actions.
In addition, several game score/rewards can be accessed to examine how well an AI agent is working.

dhttps://github.com/xunger99/SAAC-StarCraft-Adversary-Agent-Challenge.

5 of 25

Users shall design an appropriate score for their own learning tasks to differentiate the performance
of agents. As an example, Fig. 1 shows an instantaneous screenshot of the FindAndDefeatZerglings

Figure 2. The feature map (left) and a number of feature layers (on the right) of height, fog of war, camera
locations, alien and opponent units, etc., can be obtained instantaneously from PySC2 when the StarCraft II game
is played by an agent.

mini-game, where three marine units (from Terran) should be trained to explore the two-dimensional
(2D) domain e activated with fog of war to find and defeat 25 individual zerglings (from Zerg) that
have been randomly deployed throughout the map. More information of each units, regarding health,
detecting range and attacking range, etc., can be found in the appendix.

Immediately, it can be seen f that the mini-game FindAndDefeatZerglings is quite similar to
pursuit–evasion game, with the loss of the evaders being the number of the defeated zerglings un-
til the game is finished (at Tf = 180 s). Nevertheless, compared to game set-ups in most former
theoretical works, some distinctive differences of the current game set-up and the associated effects
on pursuit–evasion can be identified as follows.

1. The mini-game contains fog of war, which extensively increases the game complexity to such
a level that the corresponding learning speed is much slower than any other mini-games with
deactivated fog of war.

2. A pursuit–evasion game is a two-person zero-sum game, mostly only consisting of 1 pursuer
and 1 evader. More complicated set-ups have been considered in the recent work [2], where

eThe domain can be easily extended to three-dimensional by including different terrain elements in the StarCraft map
editor.

fInstall StarCraft and PySC2, then type the terminal command: python -m pysc2.bin.agent –map FindAndDefeatZer-
glings.

6 of 25

(a) (b) (c)

Figure 3. In the mini-game of FindAndDefeatZerglings: (a) the three marines will search and attack the zergling
(denoted by the red spot in each panel) at the verge of the fog of war (the dark area); (b) the zergling will run
towards marines and try to push back, instead of escaping into the fog of war nearby; and (c) the counterattack
will be easily defeated by the concentrated fire from the three marines.

several (ground) evaders are protected by many defending (airborne) pursuers that call for si-
multaneous attacking strategies. Similarly, the FindAndDefeatZerglings mini-game consists of
3 pursers and 25 evaders.

3. In the FindAndDefeatZerglings mini-game, instead of running away, the build-in code from
StarCraft will control the evaders (i.e., zerglings) run towards and attack the pursuers (i.e.,
marines) when both are within the sight range (see Fig. 3). Hence, the mini-game is not a
typical pursuit–evasion game. However, as shown in the appendix, the attacking capability of a
couple of evaders is much worse than the three pursuers. Hence, the attacking (or self-defense)
action from the evaders will actually simplify the searching/exploration tasks of the pursuers.
As to be shown below, such an action is deliberately disabled and only the evasion action would
be allowed in the proposed new adversary learning environment.

4. The mini-game from DeepMind only supports one agent to control the three marine units.
The other build-in low-level code controls the evaders, which will either remain still when no
opponent is within the sight range or otherwise rush towards and attack the pursuers. Hence,
the current FindAndDefeatZerglings mini-game imitates pursuit–evasion game with immobile
evaders.

5. Last but not least, in StarCraft/PySC learning environment, a deep learning design is supposed
to mimic (and then rival) the intelligence of human players. Figure 4 gives an example. It is
natural to expect that an AI agent should directly pursuit any evaders that have been found on
the radar. A human play, however, must first move the camera view to the target area and then

7 of 25

issues the pursuing action. Hence, when the StarCraft II environment is used, all agent actions
must be designed to follow the operation/behavior habit of a human player.

(a) (b) (c)

Human actions:

Agent actions:

Select all units

select army

Move camera

move camera

Attack

Attack screen

IDLE

no op

(d)

Figure 4. When the StarCraft learning environment is adopted, the agent actions should be coded by following
the action habits (and frequency) of human players. For example: (a) a human player will select the marines under
the present camera view (1), then observe the radar (2) to search zerglings, and could find one (3) to the right of the
radar; (b) next, the human player will move the camera to the founded zergling (with click of mouse), and (c) then
issue the attack action (with the shortcut key ‘a’ plus click of mouse). An agent should be designed to follow the
same action steps, which are summarized in (d). Oterhwise, the StarCraft environment will return unanticipated
action results.

The above issues 1, 2 and 5 of the StarCraft learning environment increase the problem complexity
of pursuit–evasion game. The issues 3 and 4 are resolved in the proposed new learning environment
and details can be found in Sec. IV.

It is worthwhile to mention that many other popular reinforcement learning environments can be
found, e.g., from the famous toolkit of Gym and Atari environment [27, 28]. Compared to those
reinforcement learning game problems, the StarCraft II learning environment is challenging because
of the large size of available action space. For example, the size of the action space for the classical
inverted pendulum control problem from Gym is 2 (i.e., either push left or right). The size for the
Pac-Man game is 4 (i.e., go top, bottom, left or right). In contrast, the size of the action space for
StarCraft II learning environment is around 300, including move, attack, management tasks, etc.,
further with 13 types of possible arguments. One may argue that most of these StarCraft II actions
are unnecessary for pursuit—evasion game and can be easily disabled from the available action space
during the reinforcement learning of an agent. Then, it seems that the size of the action space can be

8 of 25

reduced to 4 (refer to agent actions in Fig. 4). However, the actual pursuing or evasion coordinates,
whose size is 32×32 for the current mini-game set-up, must be given along with the associated action
command. Generally speaking, the spatial coordinate outputs shall be regarded as a part of the action
space. Then, for the current pursuit–evasion type mini-game, the size of the action space is 32× 32+
4 = 1028. For such a complicated set-up, it should be beneficial to first have a theoretical study from
the perspective of control and differential game theory.

III. Merging with Control and Game Theory

A. A linear control perspective

The pursuit–evasion game has a long-lasting connection to control theory. Normally, a strategy of the
game consists of two levels, where the bottom level is control level, which is usually the well-known
proportional guidance law, while the top level is the pursuing or evading strategy [29]. Moreover, the
control perspective helps to show that why the normal linear optimal control designs must merge with
deep learning for pursuit–evasion game especially when fog of war is activated.

For the current pursuit–evasion set-up, the state dynamics is absent g and the state space represen-
tation is simply

ẋe = ue, (1)

ẋp = up, (2)

where x is the 2D coordinates (states) of all the units, ˙() , d/dt, u is the moving velocity (control
inputs), and the subscripts ()p and ()e represent the pursuers and evaders, respectively. A more
generic game set-up with nonzero state dynamics and the corresponding theoretical manipulation can
be found in the reference [9].

Following [4], a linear quadratic cost can be defined for each pair of the pursuer and evader (e.g.,
xpi and xej) with a specified final time Tf (i.e., 180 s in the current mini-game set-up),

Jij = ||xpi − xej ||2 +Rp

∫ Tf

0

||upi ||2dt, (3)

where the weight Rp can be relaxed to 0 since there is no penalty on control input.
In the mini-game, the number of the defeated units N is defined as the loss of the evaders and the

gAcceleration capability is neglected here, though some units inside StarCraft, such as marines and medivac dropship,
do have the capability, which could be considered in future studies.

9 of 25

gain of the pursuers, that is, when Jij is minimized to 0 (or just within the attacking range of pursuers),
the i th pursuer will be able to attack the j th evader. An optimal controller could be synthesized to
optimize the above performance objective, whereas the opponent evasion strategy seeks to reduce the
performance objective. Eventually, both sides achieve the well-known Nash equilibrium as a result of
the non-cooperative dynamic game.

As to be shown in the next subsection, the performance objective usually used in differential game
is the expected capture time,

v(s, h) =
tf
N
, (4)

where s denotes the searching strategy, h denotes the hiding strategy, and v is the expected capture
time. It is worthwhile to mention that all these symbols are consistent with the pioneering reference
[8]. Given h, a control method should be designed to enable the pursuers follow the optimal s.

p1

e1 e2

e3

(a)

p1

e1 e2

e3?

?

(b)

Figure 5. The searching strategy (a) with full observations and (b) partial observations (denoted by the green
circles).

Nevertheless, the StarCraft mini-game set-up can only access to partial observations that prevent
an optimal control from possible. To show this, an example simply with 1 pursuer and 3 immobile
evaders is conceived in Fig. 5. When the locations of all three evaders are known to the pursuer,
it is easy to see that the optimal searching strategy is as those shown in Fig. 5(a), first from p1 to
e1, and then towards e2 and e3 consecutively. However, when the observation is partial, only e2 is
known to p1 in the initial set-up (refer to the green circle). When p1 captures e1, the initial invisible
e2 becomes to be visible to p1 (refer to the light green circle). Compared to Fig. 5(a), this searching
strategy is certainly not so optimal, not to mention that e3 is still in the fog of war that requests further
explorations (represented by the question marks in Fig. 5(b)).

It should be noted that Fig. 5 only considers a much simplified scenario. The FindAndDefeatZer-
glings mini-game contains more complicated features. Figure 6(a) shows a classical radar screenshot
of the FindAndDefeatZerglings mini-game. Figure 6(b) shows the corresponding screenshot when

10 of 25

(a) (b)

Figure 6. The mini-game of FindAndDefeatZerglings when fog of war is (a) activated and (b) deactivated, respec-
tively.

for of war is deactivated, where the three green dots represent the marine units (i.e., the pursuers)
and the 25 red dots represent the zerglings (i.e., the evaders). The mini-game has been designed h

to randomly redeploy 25 new evaders only when the former 25 evaders are all captured, which chal-
lenges the exploration capabilities of a searching agent in the presence of fog of war. As a result,
the FindAndDefeatZerglings mini-game is the most difficult one in the seven mini-games provided
by DeepMind in terms of training cost. The reference [20] has reported that an AI agent can capture
46 evaders after 600 M training steps (refer to Fig. 6 therein). The other reference [24] has reported
to capture 45 after 1260 M training steps (i.e., 450 K episodes therein). The same test has been per-
formed in this work for a deep Q network (DQN) agent with around 8 M trainable parameters on a
desktop with decent training hardware (Nvidia GeForce RTX 3090). The training speed is quite slow,
at 34 M steps per day.

B. A differential game perspective

Theoretically, a differential game consists of two or more players against one another in an adversary
environment with competing objectives. The corresponding theoretic studies have produced many
classical findings, such as but not limited to the references [8, 9, 25]. Such a game theory perspective
is adopted here to understand the achievable performance for pursuit–evasion in the current com-
plicated StarCraft mini-game set-up. Readers who are only interested in the reinforcement learning
environment can neglect the following theoretical developments and directly jump to the next section.

More specifically, the derivations inside Theorem 3 (e.g., Eqs. (46), (61) and (62)) from the ref-
erence [8] are identified to be particularly useful for the current pursuit–evasion game problem. By
essentially following those derivations (but with different simplifications), a constructive proof of the

hUse the script inside the StarCraft II map editor.

11 of 25

following theorem can be achieved.
Theorem 1. There exists an optimal searching strategy s∗ in the game domain Q such that for

any evading trajectory h used by the evader, the expected capture time v(s∗, h) satisfies

v(s∗, h) = lx

⌈
ly
2r

⌉(
1 +

R

a
+

2r

a

)
1

U
. (5)

here µ = lx × ly is the area of the game domain Q, U is the moving speed of the pursuer, R is
the longest distance between any two points inside the game domain, and a and c are discretized
lengthscales of the 2D game domain (see Fig. 7). Moreover, r was the sight range of the pursuer in
the former work [8], whereas r shall be the attack range in this work and the reason will be given
below.

Proof. As shown in Fig. 7, a and c are discretizations in the x and y directions. Assume lx/a =

dlx/ae, where d·e is the ceiling function. Then, when c̄ = c, the number of small discretized blocks
inside the game area µ is

M =
µ

ac
. (6)

Otherwise, when c̄ < c,

M =
lx
a

⌈
ly
c

⌉
, (7)

and c 6 2r to ensure that pursuers are able to attack any evader when the latter is within the attack
range.

According to [8] (especially the proof of Theorem 3 therein), during the time segment 0 < t 6

(R+ (a+ c))/U , the pursuer could move to any small block of size a× b, followed by first searching
along the horizontal x line and then by searching along the vertical y line. On the other hand, when
there is only one evader randomly deployed in M blocks, it is easy to see that the probability p of
capture satisfies

p =
1

M
. (8)

The pursuer would adopt the search strategy s∗ that consists of independent repetitions of the
above process for any hiding trajectory h. Then, the capture probability pK after the K th searching
with time t = K(R + (a+ c))/U satisfies

pK = (1− p)K . (9)

Hence, from Eqs. (7)–(9) and the Maclaurin series expansion of 1/p, the expected capture time

12 of 25

v(s∗, h) satisfies

v(s∗, h) =
R + (a+ c)

U

∞∑
K=0

pK =
R + (a+ c)

pU

= M
R + (a+ c)

U
=
lx
a

⌈
ly
c

⌉
R + (a+ c)

U

= lx

⌈
ly
2r

⌉(
1 +

R

a
+

2r

a

)
1

U
. (10)

Comment 1. The derivation for Theorem 3 of the reference [8] was further extensively simplified
therein, which is deemed unnecessary for the current game set-up, because each term in Eq. (10)
already holds clear physical meaning.

y

x
o

a a

· · · · · ·

c

c

c̄ 6 c

...

...

...

...

Figure 7. Sketch of the game problem, where the origin o is set to the top left, and the dotted arrowed curves
represnt the traversal path of a possible searching strategy. Here the coordinate system follows the StarCraft
environment.

Proposition 1. When the evaders are immobile, the searching strategy can be simplified to a

consecutive traversal. The corresponding expected capture time v(s∗, h) satisfies

v(s∗, h) = lx

⌈
ly
2r

⌉(
1 +

2r

a

)
1

U
. (11)

Proof. For a hiding strategy h with immobile evaders, a consecutive traversal strategy (the dotted
arrowed curves in Fig. 7) would remove R from Eq. (10), to directly produce Eq. (11).

Comment 2. From Eq. (11), it can be seen a larger a will result in a more rapid capture time. As
shown in Fig. 7, a possible searching strategy is traversal of the whole game domain, where a could
be increased to the whole length in the x direction (that is, a = lx = 32). Moreover, b = 2r with r the
attacking range to ensure that the pursuer would be able to defeat the evader when the latter is visible.

13 of 25

Proposition 2. The expected capture time for the set-up with N independent evaders is equal to

that of the set-up with one evader.

Proof. Assume the number of evaders is N . From Eq. (8), the new capture probability will be

pN =
N

M
= N · p (12)

for N evaders. Then, from Eq. (10), the new expected capture time for all N evaders is

vN(s∗, h) = N · v(s∗, h) = N
R + (a+ c)

pNU
=
R + (a+ c)

pU
= v(s∗, h). (13)

Comment 4. The reward examined in the mini-games is the number of defeated evaders. Given
the expected capture time v(s∗, h), the reward becomes

R =
Tf − Tk
v(s∗, h)

×Ne =
Tf − NeHe

NpDPS

v(s∗, h)
×Ne, (14)

where the game finish time is Tf = 180 s, Tk is the time that is required to defeat all the evaders
when they are all within attack range, Ne,p is the number of evaders/pursuers, He is the health of each
evader, and DPS represents damage per second imposed by the selected units. After substituting those
unit parameter values (from the appendix) and Eq. (11) into Eq. (14), the possible best mean score
(mean captured number) performance for the FindAndDefeatZerglings mini-game would be

R =
180− 25×35

3×9.8

32
⌈

32
2×5

⌉ (
1 + 2×5

32

)
1

3.15

× 25 ≈ 70, (15)

which is very close to the best mean score 62 currently achieved by a relational agent from DeepMind
[21]. The slight difference could be caused by the effect due to R that has been neglected in the
above calculation. The effect could be important especially at the game reset state and its absence
in Eq. (16) could thus yield a slight overestimation. On the other hand, a further optimization on
agent network structures could possibly furhter increase the achievable mean score. Overall, the
game theoretic perspective helps to increase our understanding of the achievable performance for the
current StarCraft mini-games.

IV. The StarCraft Adversary-Agent Challenge

In the abovementioned FindAndDefeatZerglings mini-game, all evaders are almost immobile. The
evaders (here is zergling, see Fig. A1(b)) will remain still but run towards the pursuers (here is marine,

14 of 25

see Fig. A1(a)) when the latter are visible. Such a hiding strategy actually simplifies the searching
task for the pursuers and justifies the simplified assumption adopted in Eq. (11). Gal has pointed out
that a mobile evader is more difficult to be captured [8], which motivates this work to develop a new
adversary-agent learning environment that can be used to train an AI agent for mobile evaders.

Pursuers

Agent

Evaders

Actions

Attack

Positions

Observations

Game Env

Single-agent

(a)

Pursuers

Agent1 AgentN

Evaders

Actions

Attack

Positions

Observations

Game Env

Multi-agent

(b)

Figure 8. (a) The learning environment of the mini-map from DeepMind provides an interface to a single agent,
which has been extended to (b) multiple cooperative agents in the SMAC learning environment [16].

First, Fig. 8 compares the structures of the existing mini-game reinforcement learning environ-
ments. The FindAndDefeatZerglings mini-game essentially follows the diagram shown in Fig. 8(a),
where a single agent interacts with StarCraft II environment and controls pursuers to maximize future
rewards, whereas the build-in script code from StarCraft II controls evaders (to either remain still or
push back). The SMAC toolkit [16] follows the diagram shown in Fig. 8(b), where actions from each
agent are concatenated through the SMAC toolkit, and observations from StarCraft environment are
separated and redistributed to each of the multi-agents. The paradigm underneath is a centralized
training but decentralized execution [30]. Hence, the SMAC toolkit enables reinforcement learning
of coordinated actions within multiple cooperative agents. However, as far as this author knows,
an adversary-agent environment that would enable reinforcement learning, especially for pursuit–
evasion type differential game, is still rare. To fill this gap, the current work endeavors to propose an
adversary-agent learning environment (was named StarCraft Adversary-Agent Challenge, SAAC).

Figure 9 shows the corresponding structure of the proposed SAAC environment, where two ad-
versary agents control pursuers and evaders, respectively. It is worthwhile to mention that both agents
could be further extended to concatenate multiple coordinating agents by further incorporating SMAC

15 of 25

Pursuers

Agent1 Agent2

Evaders

Actions

Attack

Positions

Actions
Observations Observations

Game Env

Adversary-agent

Figure 9. Overview of the SAAC learning environment.

toolkit.
The SAAC environment consists of some example mini-maps and adversary agents, which will

guide interested readers to build up their own maps and agents. Some of the findings that are important
for the correct implementation of the environment are summarized as follows.

• For unknown reasons, the seven mini-game maps from DeepMind cannot support two adversary-
agents for opponent players. Hence, in this work, the mini-map is built from scratch by Star-
Craft map editor. Then, interested readers can download and further edit my mini-map for their
own target research problems.

• It is well known in the StarCraft programming community that the current PySC2 interface
could produce websocket errors during the low-level message passing between multiple agent
interfaces. To bypass this issue, a thorough programming debug has been conducted in this
work to identify the corresponding code. Then, a temporary fix has been adopted to rectify the
issue before any official fix is available from DeepMind in the near future.

Other important modifications include the modified optimization objectives (to optimize the num-
ber of defeated units for pursuers and the number of living units for evaders) and the use of different
unit types to address the third issue that has been mentioned in Sec. II. More specifically, the evaders
are changed from Zerg zergling to Zerg drones, which are farming workers and will only escape to
the nearby fog of war rather than pushing back when they are attacked. The pursuers are changed
from Terran marines to Protoss void ray, which represents a classical type of attack aircraft. Figure 10

16 of 25

Figure 10. The screenshot of the adversary-agent learning environment (the FindAndDefeatDrones mini-game)
developed in this work.

shows the screenshot of this new, so-called FindAndDefeatDrones mini-game. Compared to the for-
mer FindAndDefeatZerglings mini-game, it can be seen that the FindAndDefeatDrones mini-game is
more similar to the classical pursuit–evasion game. Moreover, other units can be considered in later
studies. For example, the set-up with Terran medivac dropship versus Protoss void ray shall be able
to imitate aerospace interception and capture applications. The corresponding game modifications
should be straightforward based on the proposed FindAndDefeatDrones mini-game.

An analysis similar to Eq. (16) can be conducted for this new mini-game, which yields

R =
180− 25×40

3×16.8

32
⌈

32
2×6

⌉ (
1 + 2×6

32

)
1

3.85

× 25 ≈ 118.

However, after running this mini-map, an expert human player suggested that the above value is ex-
tensively overestimated. It is because that Eq. (16) is only for immobile evaders (recall the evaders
will actually run towards the pursuers in the former mini-game). However, in this new FindAndDe-
featDrones mini-game, the evaders (Zerg drones) will escape to the nearby fog of war to avoid to be
attacked. Moreover, the moving speed of the Zerg drones is slightly faster than the moving speed of
the pursuers (Protoss void ray). The effect of R, which is longest possible distance inside the game
domain and equal to

√
2lx, cannot be neglected anymore. Hence, Eq. (10) is adopted to yield a new

estimation of the expected number of captured units,

R =
180− 25×40

3×16.8

32
⌈

32
2×6

⌉ (
1 + 1.4×32

32
+ 2×6

32

)
1

3.85

× 25 ≈ 60.

Before jumping to the learning of the adversary-agent, a couple of tests with simplified scripted

17 of 25

agent and random agent i have been conducted to verify and validate the code and the new mini-game
set-ups. When the evader agent is random, the testing pursuit agent can achieve mean score of 50.4
(i.e., the number of the captured units), which shows that the whole adversary-agents learning environ-
ment is working. Moreover, the pursuit agent is also tested for the classical FindAndDefeatZerglings
mini-game j and achieved mean score of 40. Both tests clearly suggest the effectiveness of this testing
pursuit agent.

Figure 11. The code structure of the adversary-agents tests for the FindAndDefeatDrones mini-game, where a
full connected network is adopted in agent 1 to extract features and produce decisions.

Next, the proposed adversary-agents environment is utilized to train agents. To the best knowl-
edge of this author, most former works are focused on pursuit agents based on A2C, A3C, DQN and
relational-based neural network methods, but the other side of the coin is rarely studied. Enabled by
the new learning environment, here the attention is focus on the training of a pursuit agent. Figure 11
shows the code structure, where two interfaces from the StarCraft environment output observations
(feature maps, etc.) to pursuers and evaders, respectively. Currently, the evader agent (agent 1 in
the figure) adopts a four-layers, fully-connected convolutional network architecture. Other hyperpa-
rameter values can be found inside the code. The current work only uses such a network to rapidly
showcase the proposed adversary learning environment. Further optimizations of the network archi-
tecture and hyperparameter configurations can be straightforwardly performed by interested readers.
The pursuit agent (agent 2 in Fig. 11) adopts the above-mentioned traversal agent. Again, this agent
can be easily replaced with other reinforcement learning agents.

Figure 12 shows some representative screenshots from (a) the pursuers and (b) the evaders, re-

iInterested readers can download SAAC code and type terminal command: python TestScripted V2.py
jInterested readers can download SAAC code and type terminal command: python TestScripted V1.py

18 of 25

(a) (b)

(c)

Figure 12. Some of the representative screenshots from (a) the pursuers and (b) the evaders, respectively, during
one episode of the FindAndDefeatDrones game. (c) The corresponding searching and evasion strategies, where the
dashed circles represent the corresponding attack radius and the dashed lines represent searching paths.

19 of 25

spectively, during one episode of the FindAndDefeatDrones game k. The four consecutive stages are
from the initial step to the middle period of a traversal type searching. Figure 12(c) shows the trajec-
tories of the pursuers in these four stages, and further shows the corresponding spatial distributions
(from stage 2 to stage 4) of evading survivals. At the first stage, the initial 25 evaders are randomly
scattered throughout the whole game domain and, for clarity, are not shown in Fig. 12(c). It can be
seen that all three pursuers stayed together for concentrated firing capability during the searching of
the evaders. Similarly, just after a dozen of training episodes, the evader agent learns to control all 25
evaders to gradually move together and eventually convene at either corner of the game domain.

As shown in Fig. 11, the current evader agent only supports collective evasion or collection ex-
ploration, which extensively simplified the size of action space and reduce the reinforcement learning
time. Such a team action strategy can be modified by changing the available action space. The game
reward R shows in Fig. 13 suggests that the reinforcement learning quickly helps to reduce the num-
ber of the captured evaders from around 51 (the solid line in the figure) to around 30 (the dashed line).

Figure 13. The number of the captured units for the FindAndDefeatDrones game, where (–) denotes the re-
sults achieved by the random agent for the evader part, and (−−) shows the results through the adversary-agent
reinforcement learning with a convolutional network and DQN method.

Theoretically, through the current group searching and team hiding strategies, the FindAndDe-
featDrones mini-game with 3 pursuers and 25 evaders is actually reduced to the classical one princess
and one monster game. From Fig. 12(c), the hiding strategy learning in the current adversary game
environment is similar to the well-known solution from Gal [8], that is, all evaders behavior as one

kInterested readers can download SAAC code and type terminal command: python exec 2agents.py.

20 of 25

unit, keep moving to a random location as a team and stay still for a certain time interval, and then
repeat such a procedure. It is worthwhile to mention that the two strategies also imitate the possible
action behavior from ordinary human players, who are tended to control a group of units together.
Whether a separate searching or a separate evasion would lead to better rewards is still an interesting
open question that request further study, which however is beyond the scope of the current paper.

V. Conclusion

In this paper, a StarCraft based reinforcement learning environment that supports adversary agents
has been proposed for the study of pursuit–evasion game in the presence of fog of war. The key con-
tribution includes the analysis of the potential performance of an agent in the current pursuit–evasion
mini-game, by merging control and differential game theory for the specific reinforcement learning
problem set-ups, and the development of SAAC environment by extending the current StarCraft mini-
games. The current work is solely focused on the evader agent learning, which is rare in the former
studies, and configures the pursuit agent to a testing traversal agent with decent searching perfor-
mance. The proposed SAAC environment should also be applicable to the future studies that wish to
train adversary agents simultaneously, and the bottleneck that the author can currently envision is the
prohibitive training cost.

Theoretically, the most critical part of this work is the analytical explanation of the potential
pursuit agent performance by differential game theory for the StarCraft mini-game set-ups. In ad-
dition, the resultant performance values help to examine the performance of the traversal pursuit
agent used in the adversary-agent trainings. The subsequent study showcases the use of this learn-
ing environment and the effectiveness of the learned adversary agent for evasion units. On the other
hand, reinforcement learning usually assumes a stationary environment, which could be inapplicable
to pursuit–evasion when non-cooperative game dynamics appear. Hence, the proposed SAAC envi-
ronment should enable new research directions for both differential game research community and
reinforcement learning research community, and help to promote the merging of both game theory
and AI technology together.

Last but not least, the author wishes to emphasize that this paper serves as an introduction with
a focus especially on the development of the SAAC environment, with detailed explanations of why
to design in such a way and how to bypass the inherent code issues and certain software limitations,
etc.. The corresponding SAAC code can be found at GitHub: https://github.com/xunger99/SAAC-
StarCraft-Adversary-Agent-Challenge. More studies regarding different AI network architectures
and hyperparameter optimization will be given in the follow-up articles.

21 of 25

Acknowledgement

This research was conducted during the pandemic era when financial resource and student support
were both scarce. The author does wish to acknowledge the great affection, emotional support and
understanding from his family.

References

1Pachter, M., Von Moll, A., Garcia, E., Casbeer, D., and Milutinović, D., “Cooperative Pursuit by Multiple Pursuers
of a Single Evader,” Journal of Aerospace Information Systems, Vol. 17, No. 8, 2019, pp. 371–389.

2Zadka, B., Tripathy, T., Tsalik, R., and Shima, T., “Consensus-Based Cooperative Geometrical Rules for Simulta-
neous Target Interception,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 12, 2020, pp. 2425–2432.

3Shen, H. X. and Casalino, L., “Revisit of the Three-Dimensional Orbital Pursuit-Evasion Game,” Journal of Guid-
ance, Control, and Dynamics, Vol. 41, No. 8, 2018, pp. 1820–1820.

4Gutman, S., “Exoatmospheric Interception via Linear Quadratic Optimization,” Journal of Guidance, Control, and
Dynamics, Vol. 42, No. 3, 2019, pp. 624–631.

5Ye, D., Shi, M. M., and Sun, Z. W., “Satellite Proximate Pursuit–Evasion Game with Different Thrust Configura-
tions,” Aerospace Science and Technology, Vol. 99, No. 4, 2020, pp. 105715(1–10).

6Venigalla, C. and Scheeres, J. D., “Delta-V -Based Analysis of Spacecraft Pursuit–Evasion Games,” Journal of
Guidance, Control, and Dynamics, 2021, In press.

7Leone, P., Buwaya, J., and Alpern, S., “Search-and-Rescue Rendezvous,” European Journal of Operational Re-
search, 2021, In press.

8Gal, S., “Search Games with Mobile and Immobile Hider,” SIAM Journal of Control and Optimization, Vol. 17,
No. 1, 1979, pp. 99–122.

9Sun, J. R., “Two-person Zero-sum Stochastic Linear-quadratic Differential Games,” SIAM Journal of Control and
Optimization, Vol. 59, No. 3, 2021, pp. 1804–1829.

10Carr, R. W., Cobb, R. G., Pachter, M., and Pierce, S., “Solution of a Pursuit–Evasion Game Using a Near-Optimal
Strategy,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 4, 2018, pp. 841–850.

11Cao, M., “Merging Game Theory and Control Theory in the Era of AI and Autonomy,” National Science Review,
Vol. 7, No. 7, 2020, pp. 1122–1124.

12Wang, Y. D., Dong, L., and Sun, C. Y., “Cooperative Control for Multi-Player Pursuit–Evasion Games with Rein-
forcement Learning,” Neurocomputing, Vol. 412, 2020, pp. 101–114.

13Wang, X. Q., Xuan, S. Z., and Ke, L. J., “Cooperatively Pursuing a Target Unmanned Aerial Vehicle by Multiple
Unmanned Aerial Vehicles based on Multiagent Reinforcement Learning,” Advanced Control for Applications, Vol. 2,
2020, pp. e27(1–13).

14Li, Z., Meyer, N. J., Laber, E. B., and Brigantic, R., “Thompson Sampling for Pursuit–Evasion Problems,”
arXiv:1811.04471v1, 2018.

15DeepMind, “PySC2 - StarCraft II Learning Environment,” https://github.com/deepmind/pysc2.

22 of 25

http://arxiv.org/abs/1811.04471

16Samvelyan, M., Rashid, T., and de Witt, C. S., et al., “The StarCraft Multi-Agent Challenge,” arXiv:1902.04043v5,
2019.

17Arulkumaran, K., Cully, A., and Togelius, J., “AlphaStar: An Evolutionary Computation Perspective,” arXiv:
1902.01724v3, 2019.

18Vinyals, O., Babuschkin, I., and Czarnecki, W. M., et al., “Grandmaster Level in StarCraft II using Multi-agent
Reinforcement Learning,” Nature, Vol. 575, 2019, pp. 350–354.

19Wang, K., “DeepMind achieved StarCraft II GrandMaster Level, but at what cost?”
https://medium.com/swlh/deepmind-achieved-starcraft-ii-grandmaster-level-but-at-what-cost-32891dd990e4.

20Vinyals, O., Ewalds, T., and Bartunov, S., et al., “StarCraft II: A New Challenge for Reinforcement Learning,”
arXiv: 1708.04782v1, 2017.

21Zambaldi, V., Raposo, D., and Santoro, A., et al., “Deep Reinforcement Learning with Relational Inductive Biases,”
ICLR, 2019.

22Alghanem, B. and Keerthana, P. G., “Asynchronous Advantage Actor-Critic Agent for Starcraft II,”
arXiv:1807.08217v1, 2018.

23“Reaver: Modular Deep Reinforcement Learning Framework,” https://github.com/inoryy/reaver.
24“PySC2 Deep RL Agents,” https://github.com/simonmeister/pysc2-rl-agents.
25Isaacs, R., Differential Games, John Wiley and Sons, 1965.
26Bernhard, P., Gaitsgory, V., and Pourtallier, O., Annals of the International Society of Dynamic Games: Analytical

and Numerical Developments, Birkhäuser Boston, 2009.
27DeepMind, “Gym,” https://gym.openai.com.
28van Hasselt, H., Guez, A., and Silver, D., “Deep Reinforcement Learning with Double Q-learning,”

arXiv:1509.06461v3, 2015.
29Shneydor, N. A., Missile Guidance and Pursuit: Kinematics,Dynamics and Control, Woodhead Publ., Cambridge,

England, U.K., 1998.
30Kraemer, L. and Banerjee, B., “Multi-agent Reinforcement Learning as a Rehearsal for Decentralized Planning,”

Neurocomputing, Vol. 190, 2016, pp. 82–94.
31“Legacy of the Void,” https://liquipedia.net/starcraft2/Legacy of the Void.

Appendix

A. The units

Figure A1 shows the race units have been considered in this work. Table A1 gives the corresponding
unit parameters. Interested readers can try other units by editing the map developed in this work with
StarCraft map editor.

23 of 25

http://arxiv.org/abs/1902.04043
http://arxiv.org/abs/1807.08217
http://arxiv.org/abs/1509.06461

(a) (b) (c) (d)

Figure A1. The StarCraft units that have been used in this work: (a) marine, (b) zergling, (c) void ray and (d)
drone.

Table A1. The information of the units [31] used in this paper.

Name Health H Sight range Attack range r Speed U Damage per second DPS
Marine 45 9 5 3.15 9.8

Zergling 35 8 0.1 4.13 10
Drone 40 8 0.1 3.94 4.67

Void ray 150 10 6 3.85 16.8

B. Some of the main code subroutines

• exec 2agents.py: the adversary-agent program entry point, will set up the neural network archi-
tecture and conduct the fit operation.

• sc2DqnAgent.py: defines the DQN agent.

• agent.py: is to be inherited by sc2DqnAgent.py, and defines the key fit function.

• env.py: sets up the StarCraft II environment, and defines the possible actions and the key step
function.

• sc2 env xun.py: is to be inherited by env.py, and extends the StarCraft II environment to the
pursuit–evasion problem.

• TestScripted V1.py: the script tests a traversal algorithm for the pursuers in the FindAndDe-
featZerglings mini-game.

• TestScripted V2.py: the script tests a traversal algorithm for the pursuers in the FindAndDe-
featDrones mini-game.

24 of 25

Other files are from Keras-rl, only after slight modifications (most of them should have been explicitly
pointed out in code annotation).

25 of 25

	I Introduction
	II StarCraft II Learning Environment
	III Merging with Control and Game Theory
	A A linear control perspective
	B A differential game perspective

	IV The StarCraft Adversary-Agent Challenge
	V Conclusion
	A The units
	B Some of the main code subroutines

