
1

Playtesting: What is Beyond Personas
Sinan Ariyurek, Elif Surer, Aysu Betin-Can

Graduate School of Informatics
Middle East Technical University

06800, Ankara, Turkey
{sinan.ariyurek, elifs, betincan}@metu.edu.tr

Abstract—Playtesting is an essential step in the game design
process. Game designers use the feedback from playtests to refine
their designs. Game designers may employ procedural personas
to automate the playtesting process. In this paper, we present
two approaches to improve automated playtesting. First, we
propose developing persona, which allows a persona to progress
to different goals. In contrast, the procedural persona is fixed to
a single goal. Second, a human playtester knows which paths she
has tested before, and during the consequent tests, she may test
different paths. However, Reinforcement Learning (RL) agents
disregard these previous paths. We propose a novel methodology
that we refer to as Alternative Path Finder (APF). We train APF
with previous paths and employ APF during the training of an RL
agent. APF modulates the reward structure of the environment
while preserving the agent’s goal. When evaluated, the agent
generates a different trajectory that achieves the same goal. We
use the General Video Game Artificial Intelligence (GVG-AI)
and VizDoom frameworks to test our proposed methodologies.
We use Proximal Policy Optimization (PPO) RL agent during
experiments. First, we compare the playtest data generated by
developing and procedural persona. Our experiments show that
developing persona provides better insight into the game and how
different players would play. Second, we present the alternative
paths found using APF and argue why traditional RL agents
cannot learn those paths.

Index Terms—Reinforcement Learning, Player Modeling, Au-
tomated Playtesting, Play Persona

I. INTRODUCTION

Game designers envision how a game will work during a
play through. As the game develops, it becomes increasingly
difficult to predict how players will interact with the game.
Playtesters help out this process by providing feedback by
playing the game. However, human playtesting introduces
latency and additional costs to the process. Therefore, re-
searchers proposed methods to automate the playtesting pro-
cess [1] [2] [3].

Additionally, the playtesting process may employ players
with distinct playstyles. These players will respond to the
game differently, and they will generate different play traces.
The game designer can use these play traces to shape her
game. In order to automate playtesting with different players,
researchers replaced these playtesters with procedural per-
sonas. A procedural persona describes an archetypal player’s
behavior. Researchers used personas to playtest a Role-Playing
Game [4] and a Match-3 [5] game. As a result, personas
enabled distinct playstyles and helped to playtest a game like
distinct players.

In order to realize the personas using RL agents, researchers
used a utility function [6] to define the decision model of a

persona. This utility function was used as the reward function
of the Q-Learning agents. However, this replacement makes
the agents bound to the utility function. Since the utility
function is tailored for a specific decision model, the behavior
of these agents is constant throughout the game. Therefore,
the procedural personas approach is not flexible enough to
create personas with developing decision models. For example,
a player may change her objectives while playing the game.
Consequently, the decision model of this player cannot be
captured by a utility function.

Bartle [7] presents examples of these changes that a player
can undergo while playing a Massively Multiplayer On-
line Role-Playing Game. We believe that the change in the
playstyle occurs after accomplishing a goal. For example, a
player may start a game by opening the treasures to find a
required item and then killing monsters. This player chooses
her actions like a Treasure Collector until she finds the desired
item and becomes a Monster Killer. We propose a sequence
of goals to model the decision-making mechanism of this
player. The sequence-based approach was previously used in
automated video game testing agents [8] and was found more
practical than non-sequence-based approaches.

The developing persona model consists of multiple goals
that are linked. Each goal consists of criteria and a utility
function. The utility function serves the same purpose as
in procedural personas. The criteria determine until which
condition the current goal is active. When the current goal
criteria are fulfilled, the next goal becomes active. The agent
plays until the last goal criterion is fulfilled or until the end
of the game. The game designer sets the criteria and utility
functions of each goal. The goal structure enables the creation
of dynamic personas. Additionally, this approach gives a more
granularized control over a persona. The game designer can
create variations of Monster Killer by setting different criteria.
In order to playtest a casual Monster Killer, the game designer
may set a health threshold as the criterion; and to playtest
a hardcore Monster Killer, the game designer may set the
percentage of monsters killed as the criterion.

Furthermore, the game designer may envision a game with
various endings. In order to playtest her game, she utilizes
an agent that behaves like an Exit persona and exercises
this agent multiple times. Then, the game designer analyzes
the trajectories generated by this agent and sees that all
the trajectories provide data for only one of the possible
endings. On the other hand, a human playtester would have
generated trajectories that cover various endings. Thus, the

ar
X

iv
:2

10
7.

11
96

5v
2

 [
cs

.A
I]

 6
 A

pr
 2

02
2

2

shortcoming of automated playtests is not caused by the Exit
persona but by the inherent nature of RL algorithms. RL
algorithms such as Deep Q-Network (DQN) [9], Proximal
Policy Optimization (PPO) [10], and Monte Carlo Tree Search
(MCTS) [11] disregard the previous trajectories. Consequently,
even if we train an agent with any of these algorithms and then
evaluate the agent, and repeat this process numerous times, all
the generated trajectories would be similar most of the time.
However, the trajectories may be different due to the following
reasons a) the random initialization of the Neural Network
(DQN and PPO) b) ε-greedy policy of DQN c) stochasticity
of MCTS d) the game’s nondeterminism. The critical point is
that even if the agent generates a distinct trajectory, this result
is not by design but by random chance.

Exploration methods in RL improve the agent’s policy by
motivating the agent to explore the environment. As the agent
explores an environment, the agent improves its policy. The
researchers proposed methods to motivate the agent to explore
less visited states [12] [13] [14]. Compared to the traditional
exploration methods such as ε-greedy, where exploration is
achieved through randomness, these modern algorithms entice
exploration logically. These algorithms learn to distinguish the
unvisited states from the visited states, consequently, these
algorithms guide the agents to less-visited states. As a result,
exploration methods vastly improved the agent’s score, such
as Montezuma’s Revenge [12].

On the other hand, APF knows the previous trajectories and
guides the agent to learn to play differently from previous
ones. For this purpose, APF penalizes the agent when the
agent visits a similar state and rewards the agent when the
agent visits a different state, compared to the states in the
previous trajectories. APF employs the state comparison algo-
rithms used in exploration algorithms. These state comparison
algorithms are the backbone of exploration research, and
researchers tested these algorithms in multiple games. We
show how we build the APF framework to generate new and
unique playtests and how APF augments any RL agent.

In this paper, we list the contributions as follows. Our
first contribution is the developing persona. The developing
persona is more flexible and capable than the current per-
sona models. We show how game designers can utilize the
developing persona to empower the playtesting. Our second
contribution is the Alternative Path Finder. We present a
generic APF framework that can augment every RL agent.
We use the GVG-AI [15] and VizDoom [16] environments to
demonstrate our proposed methodologies.

This paper is structured as follows: Section II describes the
examples and methodologies of related research. We grouped
the related research into four subsections: Playtesting, Per-
sonas in Playtesting, Automated Playtesting, and Exploration
Methods in Reinforcement Learning. The developing persona
is based on the first three subsections. Next, APF is founded
on the Exploration Methods in Reinforcement Learning. Our
proposed methodology that consists of developing persona
and APF is presented in Section III. Section IV describes
our experimentation setup and Section V presents the results
of these experiments. Section VI discusses the outcomes of
the strategies used, their contributions and limitations. Lastly,

Section VII concludes this paper.

II. RELATED RESEARCH

A. Playtesting

Playtesting is a methodology used in the game design
process. Playtesters test a game, and feedback is collected
from these playtesters. The game designers use this feedback
to improve their game. As this process requires a human effort,
researchers proposed methods to automate game playtesting.
Powley et al. [1] coupled automated playtesting with a game
development application. Gudmundsson et al. [2] trained a
convolutional neural network to predict the most humane
action in Candy Crush, and they used this network to assess
level difficulty. Roohi et al. [3] used RL and a population
model to determine level difficulty for Angry Birds Dream
Blast. These approaches derive the automated playtesters from
an individual player archetype. Nevertheless, during a playtest,
there can be various playtesters resembling a different player
archetype.

B. Personas in Playtesting

In playtesting, personas provide game designers information
about how different player archetypes would play the game.
Persona is a fictional character that represents a user type.
Bartle [17] introduces a taxonomy of personas that are identi-
fied from a Multi-user Dungeon Game. The author acknowl-
edges these four distinct personas as Socializers, Explorers,
Achievers, and Killers. The author introduces a graph with
axes that maps the players’ interest in a persona. Bartle [7]
extends this research by introducing development sequences
for personas. The development sequences reveal how and why
a player may change to a different persona. Tychsen and
Canossa [18] present a study on collecting game metrics and
how different personas can be identified by these metrics.
The authors present the personas of the game Hitman Blood
Assassin. The game identifies these personas: Mass Murderer,
Silent Assassin, Mad Butcher, and The Cleaner. They argue
that a persona can be recognized using the metrics collected
from a play trace. These approaches focus on identifying
different personas in a game.

C. Automated Playtesting

In order to automate the playtesting, researchers pro-
posed techniques to realize the decision model of a persona.
Holmgård et al. [6] used a utility function to realize the
decision model of a persona. This utility function is used
as the reward function for the Q-Learning agent. The agents
are exercised in an environment called MiniDungeons. The
agents produced play traces as if they are of a specific
persona. Holmgård et al. [19] extended their previous work
by substituting the Q-Learning agents with a neural network.
The inputs to the neural network were hard-coded, handpicked
parameters. The authors used a genetic algorithm to find the
weights of this neural network. They called their new method
‘evolved agent’. Evolved agent required less training than
the Q-Learning agent and was able to generalize to other

3

levels better. Holmgård et al. [20] upgraded the environment
to MiniDungeons 2. In this study, the authors proposed to
generate personas using MCTS agents that use their proposed
utility function. Their reasoning for using MCTS, especially
Vanilla MCTS [11], was to provide faster data to the game
designer. In Q-Learning and Evolved agents, these agents have
to be trained first. Holmgård et al. [4] extend the MCTS by
improving the selection method of MCTS. In their previous
study, the authors state that the Mini Dungeons 2 game was
too complex for Vanilla MCTS. Therefore, they model a new
selection phase that is specifically tailored towards a specific
persona. They accomplish this by evolving the UCB formula
by a genetic algorithm. The authors crafted the fitness function
of each persona. This fitness function also determined the
fitness function of the evolutionary algorithm. The evolved
UCB formula improved their results among every persona.
Silva et al. [21] used personas to playtest the Ticket to Ride
board game. The authors designed four different competitive
personas to play the board game. The authors handcrafted a
set of heuristics for each persona. They showed that personas
revealed useful information that the game rules did not provide
rules for two situations. Mugrai et al. [5] employed four
different personas for Match-3 games. These personas are Max
Score, Min Score, Max Moves, and Min Moves. The authors
showed that these four personas could give the game designer
valuable information about a level.

The main drawback of persona research is the utility func-
tion. First, the utility function is static and stays constant
throughout the game. Therefore, the game designers cannot
model players with development sequences [7]. Second, de-
pending on the level layout, personas can execute a similar
sequence [4]. Hence, the synthetic playtesters would provide
ineffective feedback. Lastly, synthetic playtesters are realized
using RL agents. Since RL agents optimize the total accumu-
lated reward, synthetic playtesters would not test all playable
paths.

D. Exploration Methods in Reinforcement Learning

An RL agent explores the environment to learn which
action yields the highest reward in a state. In order to learn
this policy, the RL agent has to explore the environment.
Intrinsically motivating an RL agent to explore novel states
is an exploration problem. The researchers proposed different
ways to make agents explore distinct states of the environment.
Count-based approaches reward the less-visited states more
than frequently visited states. Therefore, the agent becomes
inclined to visit the less visited states. The count is formulated
using a density model [12], a neural density model [22], a
hash table [23], and exemplar models [13]. Another proposed
approach is to augment the reward function by measuring
the agent’s uncertainty about the environment. Researchers
measured the uncertainty using bootstrapped DQN [24], state-
space features [14], and error of a neural function [25].
Additionally, researchers proposed approaches that explore the
state space by optimizing the state marginal distribution to
match a target distribution [26]. These exploration proposals
intelligently incite the agent to explore the environment. The

goal of exploration is not to find a unique way of playing but
to find the best path every time we execute the RL agent.
However, these methods can differentiate between similar
states and new states. We base our APF proposal based on
this accomplishment.

III. METHODOLOGY

In this paper, we address the shortcomings of the procedural
persona with a multi-goal oriented persona, the developing
persona. Additionally, we recognize there may be alternative
playtests that a persona may produce. We propose APF to
discover those playtests.

In the following subsections, first, we introduce the devel-
oping persona. Afterward, we present the necessity for an APF
and introduce the foundation of APF. Next, we show how we
use the techniques in exploration field to implement the APF.
Finally, we describe how to use APF with an RL agent.

A. Developing Persona

A persona reflects an archetypal player’s decision model. In
order to realize a persona, first, the persona’s decision model
should be translated to game conditions. Second, an actor
should play according to this translation. Researchers [4] [5]
proposed using a utility function to map the decision model
to game conditions. This utility function replaces the reward
mechanism of the environment and provides a tailored reward
mechanism for each persona. Researchers [4] [5] used RL
agents as actors. Consequently, these RL agents are akin to
synthetic playtesters that represent the decision model of a
persona. These playtesters, procedural personas, represented
various personas such as the Monster Killer, Treasure Collec-
tor, and Exit personas. In this paper, we extend the procedural
persona framework by introducing a multi-goal persona.

We propose a multi-goal persona to generate a more
customizable playtester. We have two reasons that a multi-
goal persona would be beneficial for game designers. First,
the game designer does not have granular control over the
personas. For example, the game designer may want to playtest
a monster killer persona that kills monsters until its health
drops below a certain percent. However, when to cease killing
monsters was left to the RL agent, and the game designer had
little control over these decisions [27]. Second, the previous
approaches do not allow development in persona. Though
procedural personas may realize the persona archetypes that
Bartle [7] presented, procedural personas cannot realize the
development sequences that Bartle also presents. For example,
if the goal of the procedural persona is killing monsters, the
procedural persona will always be a Monster Killer.

A multi-goal persona is a procedural persona with a linked
sequence of goals rather than a single utility function. A goal
contains a utility function and a transition to the next goal. If
there is a single goal in the sequence, there is no need to define
the transition. Hence, a goal-based persona with a single goal
is equivalent to a procedural persona. The transition connects
the goals, and the transition occurs depending on the criteria.
Game designers determine the criteria, and criteria hold con-
ditions related to the game. For example, a criterion can be

4

Fig. 1: An example level created by GVG-AI framework.

killing 50% of the monsters or exploring 90% of the game
or having health less than 20% or the combination of these
conditions. The developing persona maintains knowledge of
interactions such as how many Monsters, Treasures have been
killed or collected. Next to the interactions, the developing
persona knows how much of its health is left. Developing
persona uses this knowledge to check whether the current
criteria are fulfilled. When all of the criteria of the current
goal are fulfilled, the next goal becomes active. When there
are no more goals, the training or the evaluation of the goal-
based persona ends.

In this section, we have described the “sudden” transitions
between goals, the previous goal becomes inactive, and the
next goal becomes active immediately. However, this transition
could also be “fuzzy”. The current goal and the next goal
can be active simultaneously. A possible implementation of
fuzzy transition may use the criteria fulfillment percentage.
For example, when the criteria are completed at least 50%,
the next goal could become active while not deactivating the
current goal. The persona would be rewarded from both of
the utility functions. Whenever the persona fulfills the current
goal completely, the next goal becomes the only active goal.
Consequently, a fuzzy transition would create a smoother
progression of playstyles.

In Fig. 1, we created an example level to demonstrate the
goal-based personas. In this example, the Avatar situated at
bottom right corner can execute the following actions Pass,
Attack, Left, Right, Up, and Down. The direction of the Avatar
is shown by a pink triangle. If the direction of the Avatar
and the action align, the Avatar moves one space in that
direction, else the Avatar changes direction. When Avatar
executes Attack, the Avatar slashes towards its direction. The
Avatar can slay Monsters by Attacking them. The monsters
move randomly and kill the Avatar if they collide with the
Avatar. There are also Treasure chests that Avatar can pick up
by simply moving over them. Lastly, when the Avatar exits
through the Door, the game terminates successfully.

A game designer may playtest a Monster Killer persona
in the game shown in Fig. 1 and generate the following
two developing personas. First one kills the Monsters and
then collects the Treasure as trophy. Second one collects the
Treasure hoping to gain an advantage against the Monsters and
then kills the Monsters. In order to realize the aforementioned

TABLE I: Utility weights for the goals

Goal Names

Game Event Killer Collector Exit
Death -1.0 -1.0 -1.0

Exit Door 1.0
Monster Killed 1.0

Treasure Collected 1.0

Exit

Collected

All Treasures

Collector

Killed All

Monsters

Killer

Exit

Killed All

Monsters

Killer

Collected

All Treasures

Collector

Fig. 2: Developing Persona

personas, the game designer designs two developing personas,
as seen in Fig. 2. Next, she designs the utility functions of the
goals, as seen in Table I. In order to realize these personas as
playtesters in a game, the game designer can employ any RL
agent. When the agent finishes training, the game designer can
use the agent for playtesting. The importance of developing
personas is that developing personas introduces a framework
to formalize how players change their goals over the course
of playing a game.

B. Alternative Path Finder

The actions of an RL agent are motivated based on the
feedback received from an environment. As the agent is trained
in an environment, the feedback will shape the agent’s policy.
When the training is over, the agent will behave according
to the learned policy. Additionally, if we train the same
agent in the same environment multiple times, the learned
policies will be similar. At the end of each training, we can
evaluate the trained agent in the same environment to obtain
trajectories. These trajectories will be similar as the learned
policies were similar. On the other hand, the game designer
might be interested in seeing different playstyles.

In order to diversify the learned policies, one has to
change the feedback mechanism of the environment. Proce-
dural personas [4] [5] accomplish this by rewiring the feed-
back mechanism by a utility function. An agent representing
a persona will learn a different policy than another agent
that represents a different persona. However, when the game
designer wants to see different playstyles within the same
persona, the procedural persona approach also falls short. For
example, the game designer may want to see how different
players complete a game with multiple endings. To model
these players, she trains an agent that mimics the Exit persona,
and she analyzes the trajectory from this agent’s execution.
Nevertheless, the resultant trajectory of this persona will be the
path to the closest ending. The other endings in the game will
be neglected, and the game designer will only have playtest
data that corresponds to one possible end of the game. A
preliminary solution to this problem is masking the feedback

5

from some of the endings. Thus, the agent will generate a
playtest towards a particular ending. However, this solution
requires additional tinkering, and there might be additional
playtests towards the same ending. Another subpar solution is
that the game designer would apply randomness to the agent’s
actions or add random noise to the input to diversify the
trajectories. However, randomness does not guarantee that the
agent will generate different playtests. Therefore, this solution
also does not give complete control to the game designer.

On the other hand, with human playtesters, the game
designer could have asked a playtester to play differently. The
playtester already knows which paths or particular states she
has visited before, so she uses this past knowledge to play
the game differently. Therefore, the source of this problem is
that the current agent does not know what the previous agents
did in the prior runs. Every playtester which an RL agent
represents generates a playtest anew. In order to solve this
problem, we propose Alternative Path Finder.

1) Measuring Similarity: A game can be formulated using
a Markov Decision Process (MDP). MDP formulates the
interaction between an actor and the environment [28].

Suppose a human player or an agent played a game, and
we obtain the trajectory τ= {s0, a0, s1, a1, ..., sn} where s
corresponds to a state, a corresponds to an action, and the
subscripts denote the state or action at time t. We want to train
an agent that knows τ , and we want this agent to generate a
trajectory different than τ . Therefore, we need to calculate a
measure to represent the similarity of these two trajectories.
We propose two different methods to calculate the similarity.
First method is to calculate the recoding probability of a state
s, p(s|τ). If s ∈ τ , then the probability should be high,
and if s /∈ τ , then the probability should be low. Second
method is calculating the prediction error of a dynamics model
q((st, at, st+1)|τ). If the transition st, at, st+1 exists in τ , then
the prediction error should be low, and if this transition does
not exist in τ , then the error should be high.

In the rest of this paper, we swap the state s with observation
o, which the RL agent sees. In most of the frameworks such
as GVG-AI [15] and VizDoom [16], the observation o seen
by the RL agent corresponds to a frame f .

2) From Recoding Probability to Intrinsic Feedback: Belle-
mare et al. [12] used Context Tree Switching (CTS) [29] to
intrinsically motivate an RL agent for exploration. CTS uses a
filter to evaluate the recoding probability of a pixel. The filter
used by the authors and in our experiments is shown in Fig.
3(a) and Fig. 3(b), respectively. The filter gathers information
around a pixel and CTS uses this information to predict this
pixel. When this operation is done for every pixel of an image,
the recoding probability of an image is calculated.

In order to use the recoding probability to differentiate
between the novel frames from similar frames, we need a
boundary probability value. We refer to this probability as
pmin (see Eq. 1). First, we train a CTS model using all of
the frames in trajectories. Then, we calculate the recoding
probability of every frame in this trajectory. Next, we set the
pmin equal to the minimum of all these recoding probabilities.
As CTS is a learning-positive model, every frame from these

X
i,j

(a) L-shaped Filter

X
i,j

(b) +-shaped Filter

Fig. 3: Filters mask the pixels around the orange pixel, the
data from white pixels are blocked, and the data from the
cyan pixels are supplied. Finally, CTS uses the information
gathered from cyan pixels to predict the recoding probability
of the orange pixel.

trained trajectories will have a higher recoding probability than
pmin.

pmin = min(p(f0|CTS), p(f1|CTS), ..., p(fn|CTS))
s.t. f0..n ∈ τ0, ..., τn

(1)

When an agent or a human player plays the game, the actor
will receive a new frame fnew. First, we calculate its recoding
probability pnew=p(fnew|CTS). If pnew is smaller than pmin,
this indicates that this frame provides new information and
if pnew is greater than pmin, this indicates that this frame
does not provide new information. Next, the magnitude of the
information depends on how close pnew is to pmin. We use
this difference to calculate the amount of reward or penalty.

pnew > pmin : feedback =
β

1 + log pnew

pmin

− β

pnew ≤ pmin : feedback = β − β

1 + log pmin

pnew

(2)

We use Eq. 2 to calculate the additional reward signal.
This formula yields maximum β reward when pnew → 0
and minimum −β when pnew → 1. This additional reward
signal provides a negative feedback for visiting similar states
and positive feedback for visiting novel states. We refer to the
APF method that uses CTS internally as APFCTS.

3) From Predicting Dynamics to Intrinsic Feedback: Pathak
et al. [14] used the Intrinsic Curiosity Module (ICM) to
intrinsically motivate an RL agent for exploration. ICM is
a Neural Network (NN) architecture that learns to predict
the environment dynamics and uses the prediction error as
the intrinsic motivation. ICM has two NNs called as forward
model and inverse model. The forward model predicts the
next state features φ(st+1) using the current state features
φ(st) and current action at. The inverse model predicts the
current action at using the current state features φ(st) and the
next state features φ̂(st+1). ICM uses Convolutional Neural
Network (CNN) to encode the states into state features,
φ(st) = CNN(st+1). The prediction error is the difference

6

between the predicted next state features φ̂(st+1) and extracted
next state features φ(st+1). Therefore, if the agent has seen
the transition φ(st), at, φ(st+1), the prediciton error will be
low, and if not, the prediction error will be high.

In order to use the prediction error to differentiate between
the novel frames from similar frames, we need a boundary
value. We refer to this value as qmean (see Eq. 3). First, we
initialize an empty ICM architecture. Next, we use transfer
learning to set the weights of CNN encoders, and then we
freeze the weights of CNN. The source can be the CNN
layers of the RL agent, or if the agent also used ICM, we
can use ICM’s CNN layers. Afterward, we use the previous
trajectories to train the forward and inverse models of ICM.
At the end of the training, we have an ICM model that has a
better prediction towards the transitions that exist in the given
trajectories and a worse prediction towards the transitions that
do not exist. Lastly, we replay the previous trajectories, gather
all of the prediction errors, and calculate the mean of all
the prediction errors. We do not calculate the max of all the
prediction errors as the ICM may not improve the predictions
for every transition or make prediction errors. Therefore, max
would be a poor choice for a boundary value.

qmean = mean(ICM(f0, a0, f1), ..., ICM(fn−1, an−1, fn))

s.t. f0..n ∈ τ0, ..., τn
s.t. a0..n−1 ∈ τ0, ..., τn

(3)
When an agent or a human player plays the game, the actor

executes action a on frame f . As a result, the actor sees a
new frame fnew. First, we calculate the prediction error of
this transition, qnew=ICM(f, a, fnew). If qnew is greater than
qmean, this indicates that this transition is less likely to exist
in the previous trajectories. If qnew is less than qmean, this
indicates that this transition is likely to exist in the previous
trajectories.

qnew > qmean : feedback = β − β

1 + log qnew

qmean

qnew ≤ pmin : feedback =
β

1 + log qmean

qnew

− β
(4)

We use Eq. 4 to calculate the additional reward signal.
This formula yields maximum β reward when qnew → 0
and minimum −β when qnew → ∞. We use this additional
feedback signal to reward the novel transitions and to penalize
similar transitions. We refer to the APF method that uses ICM
internally as APFICM.

4) APF Architecture: We augment the traditional Agent and
Environment interaction by adding a new box. This augmented
architecture is shown in Fig. 4. The APF corresponds to either
APFCTS or APFICM. Before we start training an agent, we
first train the APF with the previous trajectories as described
in Section III-B2 or Section III-B3. At this point, we have an
APF module that discerns the states or transitions. Afterward,
when a new state and a new reward are observed from the
environment during the training, these observations first enter

the APF. APF modulates the reward signal by adding a penalty
or reward by using the Eq. 2 or Eq. 4.

Agent

Environment

Action

Re
w
ar
d

St
at
e

St
at
e

APF

M
od

ifi
ed

Re
w
ar
d

Trajectories

Fig. 4: Alternative Path Finding Architecture.

The one drawback of this approach is that the feedback is
unbounded. Since the feedback is infinite, the agent may loop
over novel states or get stuck in a novel state [25]. The agent
may visit a novel state repeatedly to get a positive reward
and forget the actual task in the environment. The second
drawback is that some portion of the game may be strict,
offering no alternative paths such as Super Mario Bros. [14].
Consequently, APF will penalize this portion of the game,
naively thinking there may be alternative paths.

We propose a solution for each of these drawbacks. For the
first drawback, we propose to put a cap on the total reward
and penalty that APF provides. This solution limits the infinite
feedback, and this process operates as follows: if a state is
distinct, APF clamps the reward by the positive cap poscap.
Then, APF yields this clamped reward and updates the positive
cap by subtracting the clamped reward. Once the positive cap
is exhausted, the additional reward that APF provides becomes
zero. We also apply the same principles for the penalty by
providing a negative cap, negcap. This solution limits the agent
looping over distinct states or getting stuck in a state like the
noisy TV problem [25]. Furthermore, as the total reward and
penalty are known beforehand, this solution also simplifies
the design of the utility function for personas. For the second
drawback, we propose to cut these portions from the collected
trajectories. Consequently, APF will not penalize the agent, as
APF will be blind for this portion of the path.

We introduced two different APF approaches as each has
its advantages and disadvantages. The advantage of APFCTS
is that the CTS model can be trained from a trajectory that
consists of a few frames. However, APFICM is more data-
intensive compared to APFCTS. Furthermore, APFICM re-
quires a previously trained agent for transfer learning, which is
not required for APFCTS. Nevertheless, as APFCTS operates
directly on pixels, a slight noise in a frame would decrease
the recoding probability.

Last but not least, though we presented the APF on top
of exploration methods CTS and ICM, APF may also be
formulated on other exploration methods such as exemplar
models [13]. As APF depends on methods used in exploration,
we need to draw a line between exploration and APF. The goal
of exploration methods is to increase the agent’s knowledge
about its environment during training. So that when we eval-
uate, this agent delivers top performance in this environment.
The goal of APF is to help the agent to discover the different
performances without changing the agent’s goal. Therefore

7

during training, APF modulates the reward structure so that
the old performances are penalized, and different performances
are rewarded.

IV. EXPERIMENTS

In this paper, we used two different environments to test
our proposals, GVG-AI [15] and VizDoom [16]. We describe
the environments and the experimental setup in this section.

The first testbed game is created using the GVG-AI frame-
work, shown in Fig. 5. The game has a 14× 20 grid-size, and
consists of an Avatar, Exits, static Monsters, Treasures, and
Walls. The human player or an agent controls the Avatar. The
game lasts until the Avatar goes to one of the Exits, or gets
killed by a Monster, or until 200 timesteps. The action space
consists of six actions No-Op, Attack, Left, Right, Up, and
Down. GVG-AI framework is extended to run a game with
more than one Door. The actor receives distinct feedback for
the following interactions killing a Monster, getting killed by
a Monster, collecting a Treasure, and colliding with a Door.

Fig. 5: Map of the first testbed game.

The second testbed game is a Doom level, shown in Fig. 7.
The game has a 1600×832 grid size, and consists of an Avatar,
Exit, Monsters, Treasures, and Walls. The human player or an
agent controls the Avatar. The game lasts until the Avatar
goes to the Door, or gets killed by a Monster, or until 2000
timesteps. The action space consists of seven actions Attack,
Move Left, Move Right, Move Up, Move Down, Turn Left,
and Turn Right. The actor receives distinct feedback for the
following interactions killing a Monster, getting killed by a
Monster, collecting a Treasure, and colliding with the Door.

Fig. 6: Doom in-game snapshot.

Fig. 7: Map of second testbed game.

Additionally, the actor receives constant negative feedback of
0.001 for every step taken.

The third testbed game is another Doom level, shown in
Fig. 8. The game has a 1664× 704 grid size, and consists of
an Avatar, an Exit, and Walls. The human player or an agent
controls the Avatar. The game lasts until the Avatar goes to
the Door, or until 2000 timesteps. The action space consists of
seven actions Attack, Move Left, Move Right, Move Up, Move
Down, Turn Left, and Turn Right. The actor receives feedback
if the actor interacts with the Door. Additionally, the actor
receives constant negative feedback of 0.001 for every step
taken.

Fig. 8: Map of third testbed game.

We experiment with the procedural and goal-based personas
in the first and second testbed games. We test the APF in
the first and third testbed games. We used the same ran-
dom seed during the APF experiment to properly test the
APF method. We use PPO [10] agent in all of the exper-
iments. For the PPO+CTS, PPO+ICM, PPO+APFCTS, and
PPO+ICM+APFICM, we change the base PPO implementa-

8

tion slightly. The base PPO implementation is from the Stable-
Baselines project [30]. We also tested the proposed persona
with other RL agents during the initial experiments, and we
found that PPO requires less hyperparameter tuning, so we
used PPO in all of our experiments. The hyperparameters of
PPO agents are presented in Table XI, and the hyperparameters
of APF techniques are shown in Table XII. Lastly, as the
first game is deterministic, we evaluated the trained agent
once. On the other hand, as the second and the third games
are stochastic, we evaluated the trained agent 1000 times.
Furthermore, we noticed that our training was more consistent
whenever we used an exploration algorithm such as CTS or
ICM. Consequently, we had to restart the training in the first
game.

GVG-AI environment sends an observation with shape
160 × 112 × 4, we downscale this observation to 80 × 56
and then convert the observation into grayscale. Afterward,
we stack the most recent four observations, and lastly feed the
stacked observations to the agent. For CTS used in PPO+CTS
and APFCTS, we process the observation into we 42 × 42,
3-bit grayscale image, and calculate the recoding probability
of this observation. Doom environment sends the observation
with shape 160 × 120 × 1, we resize this observation to
84 × 84 × 1, and we feed the agent and the APFICM this
resized observation.

We created four different procedural personas and five
different developing personas. The four procedural personas
are Exit, Monster Killer, Treasure Collector, and Comple-
tionist. The utility weights of these procedural personas is
given in Table II. We chose these procedural personas from
[4], and we drew inspiration from these personas to make
their developing persona counterparts. The five developing
personas are Developing Monster Killer, Developing Treasure
Collector, Developing Raider, Developing Completionist, and
Developing Casual Completionist. The development sequences
of these personas are presented in Table IV, the utility function
of the goals are given in Table III, and the criteria of these
goals are shown in Table V.

TABLE II: Utility weights for procedural personas. Exit (E),
Monster Killer (MK), Treasure Collecter (TC), and

Completionist (C).

Personas

Game Event (E) (MK) (TC) (C)
Reaching an Exit 1 0.5 0.5
Killing a Monster 1 1

Collecting a Treasure 1 1
Dying -1 -1 -1 -1

TABLE III: Utility weights for the goals. Killer (K),
Collecter (Col), Exit (E), and Completionist (Com).

Goal Names

Game Event (K) (Col) (E) (Com)
Death -1 -1 -1 -1

Exit Door 1
Monster Killed 1 1

Treasure Collected 1 1

TABLE IV: Sequences for the developing personas.

Hyperparameters Development Sequence
Dev. Killer Killer -> Exit

Dev. Collector Collector -> Exit
Dev. Raider Killer -> Collector -> Exit

Dev. Completionist Completionist -> Exit
Dev. Casual Completionist Casual Completionist -> Exit

TABLE V: Criteria of the goals. Killer (K), Collecter (Col),
Completionist (Com), and Casual Completionist (Cas. Com.).

Goal Names

Criterion (K) (Col) (Com) (Cas. Com.)
Monsters Killed 50% 100%

Treasure Collected 50% 100%
Remaining Health 50%

V. RESULTS

In this study, we asked the following research questions.
• How does a goal-based persona perform compared to a

procedural persona?
– Diversity of playtests generated by personas
– Agreement between interactions performed and Per-

sona’s decision model
• Which additional paths can be discovered with APF?

A. Experiment I: Procedural vs Goal-based personas:

Table VI presents the interactions done by seven different
personas. The Exit persona directly goes to the Door, which
is four spaces below the Avatar. The other three procedural
personas also go to the same Door, but also collecting the
Treasure and killing the Monster on the way. The Developing
Killer persona defeats all of the Monsters on the upper half of
the level. The Developing Collector persona collects four of
the Treasures on the upper half of the level. The Developing
Raider is a combination of Developing Killer and Developing
Collector, consequently kills the Monsters and then collects the
Treasures in the upper half of the level. Lastly, the Developing
Completionist kills more Monsters and collects more Treasures
than every other persona. However, Developing Completionist
misses the Monster and the Treasure below the starting po-
sition. We see all procedural personas interact with a small
region of the level, whereas the developing personas interact
with a broader region. Therefore, we conducted the same
experiment for procedural personas with PPO + CTS RL agent.
Table VI displays the interactions performed by procedural
personas when the agent explores the environment. We see

9

that the interactions performed by PPO + CTS RL agent fit
better to the persona’s decision model.

TABLE VI: Interactions of Personas performed by the PPO
RL agent in Experiment I.

Game Event

Personas Monsters Killed Treasures Collected Door
Exit 0 0 1

Monster Killer 1 1 1
Treasure Collector 1 1 1

Completionist 1 1 1
Dev. Killer 3 0 1

Dev. Collector 1 4 1
Dev. Raider 3 4 1

Dev. Completionist 5 8 1

TABLE VII: Interactions of Personas performed by the PPO
+ CTS RL agent in Experiment I.

Game Event

Personas Monsters Killed Treasures Collected Door
Monster Killer 2 0 1

Treasure Collector 0 3 1
Completionist 2 3 1

B. Experiment II: Alternative paths found in GVG-AI:

We used the path found by the Exit persona in Experiment
I to train APFCTS (see Path 1 in Fig. 9). Then, we trained
the PPO + CTS + APFCTS agent in the first testbed game
while using the Exit persona’s utility weights. We repeated
the experiment for each path obtained from the PPO + CTS
+ APFCTS agent. First, an APFCTS is trained using one of
the obtained paths, and then we use this trained APFCTS to
train a PPO + CTS + APFCTS agent. The paths identified at
the end of the process are shown in Fig. 9. Table VIII shows
the total discounted rewards—the rewards received from the
environment and the APFCTS. The bold values indicate the
alternative paths of the trained path. For example, Path 1 has
four alternative paths—Paths 2 to 6. Table VIII also shows that,
when we use APFCTS, we see that the reward of playing the
same path decreases by at least 0.1, and the reward of space-
disjoint paths increases by at least 0.1. This reward difference
justifies why APF supports finding alternative paths.

Lastly, from Table VIII we notice that APFCTS clusters the
paths in Experiment II into two equivalence classes, which
are {1, 2} and {3, 4, 5, 6}. Therefore, we may interpret that
distinct paths refer to paths that are space-disjoint from the
one trained on for APFCTS.

C. Experiment III: Personas in Doom:

We experimented with 9 different personas in the second
testbed game, a Doom level (see Fig. 7). The interaction
results are presented in Table IX, and all of the personas
behave similarly to their specifications. The Exit persona
always finishes the game, and in some of the evaluations, Exit

TABLE VIII: Total Discounted Reward without APFCTS
and with APFCTS. The first row shows the total discounted
reward without APFCTS. For the rows with a path number,

the number indicates which path we used to train the
APFCTS. The values under tested paths show the total

discounted reward that the agent receives when APFCTS
modulates the environment reward. The bold values

demonstrate the found paths when we execute the PPO +
CTS + APFCTS agent.

Tested Paths
Trained Path 1 2 3 4 5 6

- 0.86 0.78 0.84 0.84 0.86 0.76
1 0.76 0.77 0.98 0.98 0.98 0.98
2 0.82 0.61 0.98 0.99 0.98 0.98
3 0.98 0.98 0.74 0.86 0.82 0.88
4 0.99 0.98 0.86 0.72 0.86 0.86
5 0.98 0.98 0.81 0.85 0.76 0.87
6 0.99 0.98 0.87 0.87 0.88 0.60

1

3
5

6

4

2

Fig. 9: Paths found by Exit persona with PPO and with PPO
+ CTS + APFCTS.

persona kills a Monster but never collects a Treasure. The
Monster Killer persona generally kills all of the Monsters,
rarely collects a Treasure, and habitually finishes the game.
Developing Killer is similar to Monster Killer but kills half
of the Monsters and rarely dies. The Treasure Collector and
Developing Collector are alike. They both collect a single
Treasure, kill the least Monsters and die the most. The Com-
pletionist, Developing Completionist, and Developing Casual
Completionist personas behave similarly, but minor differences
exist. The Developing Casual Completionist always finishes

10

the level but usually cannot collect the second Treasure. The
Completionist and Developing Completionist regularly collect
the second Treasure, but in doing so, rarely die and cannot
finish the level.

TABLE IX: Interactions of Personas in Experiment III over
1000 evaluations.

Game Event

Personas Monsters Treasures Door Death
Exit 0.27 ± 0.48 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
MK 5.79 ± 0.91 0.01 ± 0.07 0.98 ± 0.15 0.00 ± 0.00

Dev. Killer 3.54 ± 0.98 0.01 ± 0.08 0.96 ± 0.19 0.01 ± 0.08
TC 1.94 ± 0.70 0.94 ± 0.24 0.80 ± 0.40 0.19 ± 0.39

Dev. Collector 2.00 ± 0.65 0.95 ± 0.22 0.87 ± 0.34 0.13 ± 0.34
Dev. Raider 3.52 ± 0.73 0.98 ± 0.15 0.97 ± 0.17 0.01 ± 0.08

Comp. 5.76 ± 1.06 1.91 ± 0.38 0.95 ± 0.22 0.01 ± 0.11
Dev. Comp. 5.81 ± 0.92 1.91 ± 0.36 0.96 ± 0.19 0.01 ± 0.09

Dev. Cas. Comp. 5.83 ± 0.53 0.98 ± 0.13 0.98 ± 0.14 0.00 ± 0.00

D. Experiment IV: Alternative paths found in Doom:

We trained an Exit persona in the third testbed game using
PPO + ICM agent. The first path shown in Fig. 10 is the
trajectory taken by the Exit persona. We trained an APFICM
using this first path, and then we trained a new Exit persona
using PPO + ICM + APFICM agent. The new Exit persona
played the second path. The total discounted reward obtained
by these two Exit personas is shown in Table X. As the first
path consists of 52 steps, whereas the second path consists
of 77 steps, the total reward of the first path is higher than
the second. However, applying APFICM, we increase the total
reward obtained from the second path and decrease the total
reward obtained from the first path.

2

1

Fig. 10: Paths found by Exit persona with PPO and with PPO
+ ICM + APFICM.

TABLE X: Total Discounted Reward without APFICM and
with APFICM over 1000 evaluations. First row shows the

total discounted reward without APFICM. For the rows with
a number, we train the APFICM and calculate the discounted

reward by using ICM. The bold values demonstrate the
found paths when we execute the PPO + ICM + APFICM

agent by training APFICM with the trained path.

Tested Paths
Trained Path 1 2

- 0.80 ± 0.02 0.68 ± 0.01
1 0.51 ± 0.02 0.78 ± 0.01

VI. DISCUSSION

In this paper, we presented an advancement for procedural
persona, goal-based persona and introduced a method to let
RL agents discover different paths, APF. We experimented
with these methods in GVG-AI and Doom environments.

Procedural personas and developing personas are two meth-
ods used by game designers to automate the playtesting pro-
cess. One drawback of the procedural personas originates from
the utility function. A utility function realizes the decision
model of a persona. For example, a Treasure Collector receives
positive feedback from finishing the level and collecting a
Treasure. However, if the starting position of the agent is close
to the Door, the agent may neglect the Treasures. Conversely,
if the Door is positioned after the Treasures, the agent is
likely to interact with most of the Treasures. We saw this
dilemma in Experiment I. Without any exploration technique,
the procedural personas Monster Killer, Treasure Collector,
and Completionist executed the same set of actions. When
we integrated exploration into the agents that realize these
personas, the set of actions executed by these personas became
different. Furthermore, these new sets of actions were more
fitting to their decision model. This problem is also seen in
the MCTS agent playtesting the MiniDungeons 2 game [4].

The problem with the utility function is that the utility func-
tion is an amalgamation of multiple goals. Hence, depending
on the level composition and RL agent’s hyperparameters,
the procedural persona represents one of those playstyles. In
Experiment I, we believe that the Developing Completionist
fits better with the idea of a “Completionist” persona than the
procedural Completionist. Developing persona addresses this
problem by introducing a sequence of goals. Consequently,
a game designer may use the developing persona to choose
which playstyle she wants to playtest carefully.

Another advantage of developing personas over procedural
personas is that developing personas support playstyles that in-
volve alteration. For example, in Experiment I, the Developing
Raider killed the Monsters and then collected the Treasures.
The Developing Raider starts the game as a Monster Killer
and becomes a different persona —a Treasure Collector—
after fulfilling a criterion. These development sequences were
mentioned by Bartle [17], but development sequences were
impractical while using a single utility function. Consequently,
this behavior performed by Developing Raider was missing
in procedural personas. On the other hand, another important
aspect of playtesting is the ability to generate playtraces as if
a human would. In this paper, we used handcrafted utility
functions, however, these utility functions could have been
extracted from human playtest data by Inverse Reinforcement
Learning [28]. This alteration might help the RL agent to
generate a playtest that is more human-like [8][31].

In addition to the GVG-AI environment, we conducted
experiments on the Doom environment. To the best of our
knowledge, this paper is the first study to playtest personas in
a 3D environment. In 2D environments, the researchers [4][5]
employed MCTS RL agent to realize personas. Nevertheless,
MCTS would be an ineffective choice for 3D environments,
and MCTS would underrepresent the persona. Consequently,

11

we used the PPO agent in Experiments III and IV, as PPO is
a competent agent used by OpenAI [32]. In Experiment III,
we see that the PPO agent realized the decision models of
personas properly. From the results in Table IX, we interpret
that a player has to kill a Monster to finish this level. The level
is hardest for Treasure Collector and Developing Collector
as they have to kill a Monster to collect the Treasures. We
see an interesting fact about the game when we compare
the Developing Casual Completionist and the Developing
Completionist personas. The former never dies but collects
only a single Treasure, whereas the latter seldom dies but
collects both of the Treasures. From this data, we understand
that collecting the second Treasure causes the death of the
player. As the Developing Casual Completionist fears losing
her health more, this persona finds collecting the second
Treasure risky. Furthermore, comparing the Killer and the
Developing Killer personas shows that the latter die more than
the former. This comparison unravels another fact about this
level. If a player engages in combat to kill Monsters, then this
player should kill as much as possible. Otherwise, this player
is likely to die, such as the Developing Killer. On the other
hand, the Developing Casual Completionist also kills as much
Monsters as a Monster Killer. This indifference indicates that
the game may not be challenging enough for a hardcore player.

In Experiment II, we prepared a game that consists of five
Doors. We found that —without APF— the Exit persona
would take either the first or the fifth path shown in Fig. 9.
The lengths of these paths are the same and shorter than every
possible path that ends with a Door. Consequently, in the first
row of Table VIII, we see that the first and the fifth path share
the highest score. Furthermore, in Experiment IV, we saw that
—without APF— the Exit persona would take the first path
(see Fig. 10). Since this path is the closest towards the Door,
and therefore, playing this path yields a higher score compared
to the other path, shown in Table X.

We proposed APF to let RL agents discover these additional
paths shown in Fig. 9 and Fig. 10. A human playtester would
have played these paths, but without APF, the Exit persona
would overlook them as these paths yield a lower score. Hence,
the game designer would not have any playtest data for other
endings. Table VIII and Table X show insight on how APF
achieves this feat. APF modulates the reward signal of the
environment. When the agent tries to learn a similar path,
the agent is penalized, and when the agent tries to learn a
distinct path, the agent is rewarded. This reward modulation
is the reason how APF promotes finding distinct paths. The
game designer can exercise the APF to get a distinct path
and then study this path to improve her game. Afterward,
she can exercise the APF to generate as many paths as she
needs. However, the game designer might be interested in
examining the play traces that could have come from human
playtesters. We could employ an auxiliary NN trained to
select the best human-like action given an observation [2].
Nevertheless, carefully combining this NN with APF is a topic
of another study.

On the other hand, an alternative path is a subjective
concept. Every human playtester may think of another way
to represent the Exit persona. In Table VIII, we see that when

we train the APFCTS with the second path, the score of the
first path decreases, and the score of the sixth path increases.
According to APFCTS, the first and second paths are more
similar than the second and sixth paths (see Fig. 9). However,
one might argue that the first and second paths are distinct
as they reach different Doors, and the second and sixth paths
are similar as they reach the same Door. Though APFCTS is
objective in finding alternative paths, these alternative paths are
“subjectively” different for the game designers. The objectivity
of APFCTS and APFICM comes from the recoding probability
of a frame and the dynamics prediction error, respectively.

Additionally, we found that APFICM is more robust com-
pared to APFCTS. We also experimented with APFCTS in
Doom. However, CTS calculated the recoding probability of
some frames as 0. Furthermore, we observed that for our ex-
perimentation setup the plus-shaped filter in Fig. 3(b) yielded
better results than the original CTS filter in Fig. 3(a). Lastly,
researchers employed curiosity to increase the playtesting
coverage of an RL agent [33]. Though we promoted APF
to find distinct paths, APF may help game tester agents [8].
Coverage is crucial for testing, and APF increases coverage
by finding distinct paths.

Limitations & Challenges: The performance of developing
and procedural persona is dependent on the RL algorithms. If
the RL algorithm cannot play a game, the game designer could
not benefit from these automated playtesters. Furthermore,
our APF proposals are based on exploration algorithms. The
performance of APF in an environment is linked to how well
the exploration algorithm would perform in this environment.

VII. CONCLUSION

This paper focused on the problem of providing additional
tools to game designers for playtesting. In this regard, we
proposed developing persona, a direct successor to procedu-
ral personas. Furthermore, we presented a novel method to
help RL agents to discover alternative trajectories, APF. We
introduced two APF approaches, APFCTS and APFICM.

Our results show that developing personas are a successor
of procedural personas. A game designer can embody vari-
ous personalities in developing personas to generate unique
playtests. Furthermore, our experiments indicate that develop-
ing personas provide information to game designers that pro-
cedural personas cannot provide. Furthermore, we show that
automated playtesting can be extended to 3D environments
using state-of-the-art RL algorithms.

We proposed APF to discover alternative paths in an en-
vironment. We based APF on exploration research techniques
and proposed two methodologies to implement APF, APFCTS,
and APFICM. In our experiments in GVG-AI and Doom
environments, we found that APF ensures that the same path
is not generated again.

In the future, we would like to experiment with different
personas using APF. Next, APFICM can be improved by
substituting the linear layer with an LSTM layer. This substi-
tution will provide path information rather than state transition
information. Lastly, we would like to experiment with other
3D environments such as Minecraft [34].

12

REFERENCES

[1] E. J. Powley, S. Colton, S. Gaudl, R. Saunders, and M. J. Nelson, “Semi-
automated level design via auto-playtesting for handheld casual game
creation,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG), 2016, pp. 1–8.

[2] S. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao, “Human-like playtesting with
deep learning,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG), 08 2018, pp. 1–8.

[3] S. Roohi, A. Relas, J. Takatalo, H. Heiskanen, and P. Hämäläinen,
Predicting Game Difficulty and Churn Without Players, ser. CHI PLAY
’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 585–593.

[4] C. Holmgard, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas with evolved heuristics,” IEEE
Transactions on Games, pp. 1–1, 2018.

[5] L. Mugrai, F. Silva, C. Holmgård, and J. Togelius, “Automated playtest-
ing of matching tile games,” in 2019 IEEE Conference on Games (CoG).
IEEE, 2019, pp. 1–7.

[6] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Generative
agents for player decision modeling in games,” in Proceedings of the 9th
International Conference on the Foundations of Digital Games (FDG),
2014.

[7] R. Bartle, “Virtual worlds: Why people play,” Massively Multiplayer
Game Development 2, vol. 2, pp. 3–18, 01 2005.

[8] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game testing
using synthetic and humanlike agents,” IEEE Transactions on Games,
vol. 13, no. 1, pp. 50–67, 2021.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017.

[11] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43,
March 2012.

[12] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, 2016, pp. 1471–1479.

[13] J. Fu, J. D. Co-Reyes, and S. Levine, “EX2: exploration with exem-
plar models for deep reinforcement learning,” in Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, 2017, pp. 2577–2587.

[14] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, 2017, pp. 2778–2787.

[15] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M.
Lucas, “General video game ai: A multitrack framework for evaluating
agents, games, and content generation algorithms,” IEEE Transactions
on Games, vol. 11, no. 3, pp. 195–214, 2019.

[16] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,
“ViZDoom: A Doom-based AI research platform for visual reinforce-
ment learning,” in IEEE Conference on Computational Intelligence and
Games. Santorini, Greece: IEEE, Sep 2016, pp. 341–348, the best
paper award.

[17] R. A. Bartle, “Hearts, clubs, diamonds, spades: Players who suit MUDs,”
http://www.mud.co.uk/richard/hcds.htm, 2019.

[18] A. Tychsen and A. Canossa, “Defining personas in games using metrics,”
in Proceedings of the 2008 Conference on Future Play: Research, Play,
Share, ser. Future Play ’08. New York, NY, USA: ACM, 2008, pp.
73–80.

[19] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Evolving
personas for player decision modeling,” in 2014 IEEE Conference on
Computational Intelligence and Games. IEEE, 2014, pp. 1–8.

[20] C. Holmgård, A. Liapis, J. Togelius, and G. N. Yannakakis, “Monte-carlo
tree search for persona based player modeling,” in Eleventh Artificial
Intelligence and Interactive Digital Entertainment Conference, 2015.

[21] F. de Mesentier Silva, S. Lee, J. Togelius, and A. Nealen, “Ai-based
playtesting of contemporary board games,” in Proceedings of the 12th
International Conference on the Foundations of Digital Games. ACM,
2017, p. 13.

[22] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos,
“Count-based exploration with neural density models,” in Proceedings
of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, 2017, pp. 2721–2730.

[23] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan,
J. Schulman, F. D. Turck, and P. Abbeel, “#exploration: A study of
count-based exploration for deep reinforcement learning,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, 2017, pp. 2753–2762.

[24] I. Osband, C. Blundell, A. Pritzel, and B. V. Roy, “Deep exploration
via bootstrapped DQN,” in Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, 2016, pp. 4026–
4034.

[25] Y. Burda, H. Edwards, A. J. Storkey, and O. Klimov, “Exploration
by random network distillation,” in 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019.

[26] L. Lee, B. Eysenbach, E. Parisotto, E. P. Xing, S. Levine, and
R. Salakhutdinov, “Efficient exploration via state marginal matching,”
CoRR, vol. abs/1906.05274, 2019.

[27] J. A. Brown, “Towards better personas in gaming : Contract based expert
systems,” in 2015 IEEE Conference on Computational Intelligence and
Games (CIG), 2015, pp. 540–541.

[28] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[29] M. G. Bellemare, J. Veness, and E. Talvitie, “Skip context tree switch-
ing,” in Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014, 2014, pp. 1458–
1466.

[30] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

[31] B. Tastan and G. Sukthankar, “Learning policies for first person shooter
games using inverse reinforcement learning,” in Proceedings of the
Seventh AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, ser. AIIDE’11. AAAI Press, 2011, pp. 85–90.

[32] B. Baker, I. Kanitscheider, T. M. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent tool use from multi-agent autocurricula,” in
8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[33] C. Gordillo, J. Bergdahl, K. Tollmar, and L. Gisslén, “Improving
playtesting coverage via curiosity driven reinforcement learning agents,”
in 2021 IEEE Conference on Games (CoG), 2021, pp. 1–8.

[34] M. Johnson, K. Hofmann, T. Hutton, D. Bignell, and K. Hofmann,
“The malmo platform for artificial intelligence experimentation,” in
25th International Joint Conference on Artificial Intelligence (IJCAI-16).
AAAI - Association for the Advancement of Artificial Intelligence, July
2016.

http://www.mud.co.uk/richard/hcds.htm
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

13

APPENDIX A
HYPERPARAMETERS USED IN EXPERIMENTS

TABLE XI: Hyperparameters of PPO Agents

Agents

Hyperparameters PPO PPO+CTS PPO+ICM
Policy CNN CNN CNNLstm

Timesteps 1e8 1e8 2e8
Horizon 256 256 64

Num. Minibatch 8 8 8
GAE (λ) 0.95 0.95 0.99

Discount (γ) 0.99 0.99 0.999
Learning Rate (α) 5× 10−4 5× 10−4 5× 10−4

Num. Epochs 3 3 4
Entropy Coeff. 0.01 0.01 0.001

VF Coeff. 0.5 0.5 0.5
Clipping Param. 0.2 0.2 0.1

Max Grad. Norm. 0.5 0.5 0.5
Num. of Actors 16 16 32
CTS Beta (β) - 0.05 -

CTS Filter - L-shaped -
ICM State Features - - 256

ICM Beta (β) - - 0.2

TABLE XII: Hyperparameters of APF Techniques

Hyperparameters APFCTS APFICM
poscap 0.4 0.1
negcap -0.4 -0.4

APF Beta (β) 0.01 0.01

	I Introduction
	II Related Research
	II-A Playtesting
	II-B Personas in Playtesting
	II-C Automated Playtesting
	II-D Exploration Methods in Reinforcement Learning

	III Methodology
	III-A Developing Persona
	III-B Alternative Path Finder
	III-B1 Measuring Similarity
	III-B2 From Recoding Probability to Intrinsic Feedback
	III-B3 From Predicting Dynamics to Intrinsic Feedback
	III-B4 APF Architecture

	IV Experiments
	V Results
	V-A Experiment I: Procedural vs Goal-based personas:
	V-B Experiment II: Alternative paths found in GVG-AI:
	V-C Experiment III: Personas in Doom:
	V-D Experiment IV: Alternative paths found in Doom:

	VI Discussion
	VII Conclusion
	Appendix A: Hyperparameters used in Experiments

